The ultimate goal of continuous sign language recognition(CSLR) is to facilitate the communication between special people and normal people, which requires a certain degree of real-time and deploy-ability of the model. However, in the previous research on CSLR, little attention has been paid to the real-time and deploy-ability. In order to improve the real-time and deploy-ability of the model, this paper proposes a zero parameter, zero computation temporal superposition crossover module(TSCM), and combines it with 2D convolution to form a "TSCM+2D convolution" hybrid convolution, which enables 2D convolution to have strong spatial-temporal modelling capability with zero parameter increase and lower deployment cost compared with other spatial-temporal convolutions. The overall CSLR model based on TSCM is built on the improved ResBlockT network in this paper. The hybrid convolution of "TSCM+2D convolution" is applied to the ResBlock of the ResNet network to form the new ResBlockT, and random gradient stop and multi-level CTC loss are introduced to train the model, which reduces the final recognition WER while reducing the training memory usage, and extends the ResNet network from image classification task to video recognition task. In addition, this study is the first in CSLR to use only 2D convolution extraction of sign language video temporal-spatial features for end-to-end learning for recognition. Experiments on two large-scale continuous sign language datasets demonstrate the effectiveness of the proposed method and achieve highly competitive results.
translated by 谷歌翻译
针对以下问题:基于深度学习的时空层次连续语言识别模型具有大量计算,这限制了模型的实时应用,本文提出了一个时间上的超级分辨率网络(TSRNET)。将数据重构为密集的特征序列,以减少整体模型计算,同时将最终识别精度损失保持在最小值。连续的手语识别模型(CSLR)通过TSRNET主要由三个部分组成:帧级特征提取,时间序列特征提取和TSRNET,其中TSRNET位于框架级特征提取和时间序列的特征提取之间,主要包括在内两个分支:详细描述符和粗糙描述符。稀疏的框架级特征通过两个设计的分支获得的功能融合,作为重建的密集帧级特征序列,连接师时间分类(CTC)损失用于训练和优化,在时间序列特征提取部分之后。为了更好地恢复语义级别的信息,通过本文提出的自我生成的对抗训练方法对整体模型进行了训练,以降低模型错误率。训练方法将TSRNET视为发电机,框架级处理部分和时间处理部分是鉴别器。此外,为了统一不同基准下模型准确性损失的评估标准,本文提出了单词错误率偏差(WERD),该单词错误率(WERD)在估计的单词错误率(WER)和由The获得的参考WER之间的错误率。重建的帧级特征序列和完整的原始帧级特征序列为WERD。在两个大规模手语数据集上进行的实验证明了该模型的有效性。
translated by 谷歌翻译
连续的手语识别(CSLR)是一项具有挑战性的研究任务,因为对手语数据的时间顺序缺乏准确的注释。最近流行的用法是基于CSLR的“ CNN + RNN”的混合模型。但是,当在这些作品中提取时间特征时,大多数方法都使用固定的时间接受字段,并且不能很好地提取每个手语单词的时间功能。为了获得更准确的时间特征,本文提出了一个多尺度的时间网络(MSTNET)。网络主要由三个部分组成。重新连接和两个完全连接(FC)层构成框架特征提取部分。时间方面的特征提取部分通过首先使用拟议的多尺度时间块(MST-block)提高不同尺度的时间功能来进行时间特征学习,以提高时间建模能力,然后进一步编码不同的时间特征。通过变压器模块缩放以获得更准确的时间特征。最后,拟议的多级连接派时间分类(CTC)损失零件用于训练以获得识别结果。多级CTC损失可以更好地学习和更新CNN中的浅网络参数,该方法没有参数增加,并且可以灵活地嵌入其他模型中。两个公开可用数据集的实验结果表明,我们的方法可以在没有任何先验知识的情况下以端到端的方式有效地提取手语特征,从而提高CSLR的准确性并实现竞争成果。
translated by 谷歌翻译
Benefiting from the intrinsic supervision information exploitation capability, contrastive learning has achieved promising performance in the field of deep graph clustering recently. However, we observe that two drawbacks of the positive and negative sample construction mechanisms limit the performance of existing algorithms from further improvement. 1) The quality of positive samples heavily depends on the carefully designed data augmentations, while inappropriate data augmentations would easily lead to the semantic drift and indiscriminative positive samples. 2) The constructed negative samples are not reliable for ignoring important clustering information. To solve these problems, we propose a Cluster-guided Contrastive deep Graph Clustering network (CCGC) by mining the intrinsic supervision information in the high-confidence clustering results. Specifically, instead of conducting complex node or edge perturbation, we construct two views of the graph by designing special Siamese encoders whose weights are not shared between the sibling sub-networks. Then, guided by the high-confidence clustering information, we carefully select and construct the positive samples from the same high-confidence cluster in two views. Moreover, to construct semantic meaningful negative sample pairs, we regard the centers of different high-confidence clusters as negative samples, thus improving the discriminative capability and reliability of the constructed sample pairs. Lastly, we design an objective function to pull close the samples from the same cluster while pushing away those from other clusters by maximizing and minimizing the cross-view cosine similarity between positive and negative samples. Extensive experimental results on six datasets demonstrate the effectiveness of CCGC compared with the existing state-of-the-art algorithms.
translated by 谷歌翻译
To generate high quality rendering images for real time applications, it is often to trace only a few samples-per-pixel (spp) at a lower resolution and then supersample to the high resolution. Based on the observation that the rendered pixels at a low resolution are typically highly aliased, we present a novel method for neural supersampling based on ray tracing 1/4-spp samples at the high resolution. Our key insight is that the ray-traced samples at the target resolution are accurate and reliable, which makes the supersampling an interpolation problem. We present a mask-reinforced neural network to reconstruct and interpolate high-quality image sequences. First, a novel temporal accumulation network is introduced to compute the correlation between current and previous features to significantly improve their temporal stability. Then a reconstruct network based on a multi-scale U-Net with skip connections is adopted for reconstruction and generation of the desired high-resolution image. Experimental results and comparisons have shown that our proposed method can generate higher quality results of supersampling, without increasing the total number of ray-tracing samples, over current state-of-the-art methods.
translated by 谷歌翻译
Temporal sentence grounding (TSG) aims to identify the temporal boundary of a specific segment from an untrimmed video by a sentence query. All existing works first utilize a sparse sampling strategy to extract a fixed number of video frames and then conduct multi-modal interactions with query sentence for reasoning. However, we argue that these methods have overlooked two indispensable issues: 1) Boundary-bias: The annotated target segment generally refers to two specific frames as corresponding start and end timestamps. The video downsampling process may lose these two frames and take the adjacent irrelevant frames as new boundaries. 2) Reasoning-bias: Such incorrect new boundary frames also lead to the reasoning bias during frame-query interaction, reducing the generalization ability of model. To alleviate above limitations, in this paper, we propose a novel Siamese Sampling and Reasoning Network (SSRN) for TSG, which introduces a siamese sampling mechanism to generate additional contextual frames to enrich and refine the new boundaries. Specifically, a reasoning strategy is developed to learn the inter-relationship among these frames and generate soft labels on boundaries for more accurate frame-query reasoning. Such mechanism is also able to supplement the absent consecutive visual semantics to the sampled sparse frames for fine-grained activity understanding. Extensive experiments demonstrate the effectiveness of SSRN on three challenging datasets.
translated by 谷歌翻译
Representing and synthesizing novel views in real-world dynamic scenes from casual monocular videos is a long-standing problem. Existing solutions typically approach dynamic scenes by applying geometry techniques or utilizing temporal information between several adjacent frames without considering the underlying background distribution in the entire scene or the transmittance over the ray dimension, limiting their performance on static and occlusion areas. Our approach $\textbf{D}$istribution-$\textbf{D}$riven neural radiance fields offers high-quality view synthesis and a 3D solution to $\textbf{D}$etach the background from the entire $\textbf{D}$ynamic scene, which is called $\text{D}^4$NeRF. Specifically, it employs a neural representation to capture the scene distribution in the static background and a 6D-input NeRF to represent dynamic objects, respectively. Each ray sample is given an additional occlusion weight to indicate the transmittance lying in the static and dynamic components. We evaluate $\text{D}^4$NeRF on public dynamic scenes and our urban driving scenes acquired from an autonomous-driving dataset. Extensive experiments demonstrate that our approach outperforms previous methods in rendering texture details and motion areas while also producing a clean static background. Our code will be released at https://github.com/Luciferbobo/D4NeRF.
translated by 谷歌翻译
Deploying reliable deep learning techniques in interdisciplinary applications needs learned models to output accurate and ({even more importantly}) explainable predictions. Existing approaches typically explicate network outputs in a post-hoc fashion, under an implicit assumption that faithful explanations come from accurate predictions/classifications. We have an opposite claim that explanations boost (or even determine) classification. That is, end-to-end learning of explanation factors to augment discriminative representation extraction could be a more intuitive strategy to inversely assure fine-grained explainability, e.g., in those neuroimaging and neuroscience studies with high-dimensional data containing noisy, redundant, and task-irrelevant information. In this paper, we propose such an explainable geometric deep network dubbed as NeuroExplainer, with applications to uncover altered infant cortical development patterns associated with preterm birth. Given fundamental cortical attributes as network input, our NeuroExplainer adopts a hierarchical attention-decoding framework to learn fine-grained attentions and respective discriminative representations to accurately recognize preterm infants from term-born infants at term-equivalent age. NeuroExplainer learns the hierarchical attention-decoding modules under subject-level weak supervision coupled with targeted regularizers deduced from domain knowledge regarding brain development. These prior-guided constraints implicitly maximizes the explainability metrics (i.e., fidelity, sparsity, and stability) in network training, driving the learned network to output detailed explanations and accurate classifications. Experimental results on the public dHCP benchmark suggest that NeuroExplainer led to quantitatively reliable explanation results that are qualitatively consistent with representative neuroimaging studies.
translated by 谷歌翻译
Domain adaptation methods reduce domain shift typically by learning domain-invariant features. Most existing methods are built on distribution matching, e.g., adversarial domain adaptation, which tends to corrupt feature discriminability. In this paper, we propose Discriminative Radial Domain Adaptation (DRDR) which bridges source and target domains via a shared radial structure. It's motivated by the observation that as the model is trained to be progressively discriminative, features of different categories expand outwards in different directions, forming a radial structure. We show that transferring such an inherently discriminative structure would enable to enhance feature transferability and discriminability simultaneously. Specifically, we represent each domain with a global anchor and each category a local anchor to form a radial structure and reduce domain shift via structure matching. It consists of two parts, namely isometric transformation to align the structure globally and local refinement to match each category. To enhance the discriminability of the structure, we further encourage samples to cluster close to the corresponding local anchors based on optimal-transport assignment. Extensively experimenting on multiple benchmarks, our method is shown to consistently outperforms state-of-the-art approaches on varied tasks, including the typical unsupervised domain adaptation, multi-source domain adaptation, domain-agnostic learning, and domain generalization.
translated by 谷歌翻译
The ''Propose-Test-Release'' (PTR) framework is a classic recipe for designing differentially private (DP) algorithms that are data-adaptive, i.e. those that add less noise when the input dataset is nice. We extend PTR to a more general setting by privately testing data-dependent privacy losses rather than local sensitivity, hence making it applicable beyond the standard noise-adding mechanisms, e.g. to queries with unbounded or undefined sensitivity. We demonstrate the versatility of generalized PTR using private linear regression as a case study. Additionally, we apply our algorithm to solve an open problem from ''Private Aggregation of Teacher Ensembles (PATE)'' -- privately releasing the entire model with a delicate data-dependent analysis.
translated by 谷歌翻译